色伊人国产高清在线,国产亚洲精品自在久久,国产乱子伦60女人的皮视频,男人床上越折腾你是不是越爱你

技術支持
環肽的合成
發布時間:2019-11-27 10:26:22 閱覽量:

多肽藥物在治療上的重要性,越來越引起廣大藥學工作者的重視。根據肽鏈的構成可將多肽分為同聚肽(Homomeric)和雜聚肽(Heteromeric)兩大類,前者完全由氨基酸組成,后者是由氨基酸部分和非氨基酸部分組成的,如糖肽。根據肽鍵的結構又分為直鏈肽和環肽。其中直鏈肽的研究最為廣泛和深入,尤其在直鏈肽的合成技術方面無論是液相法還是固相法都已成熟。雖然許多直鏈肽體外具有很好的生物活性和穩定性,但是進入體內后活性很快消失。因為體內環境復雜,存在各種各樣的酶。直鏈肽在酶的作用下很快降解,導致活性喪失。另外,直鏈肽在液相里的構象柔性使得不大容易符合受體的構象要求。這些不利因素造成多肽藥物仍有許多問題有待解決。為了得到生物活性優秀半衰期長,受體選擇性高的多肽,文獻報道過很多多肽改造的方法,其中包括將直鏈肽改造成環肽。這種大環分子具有明確的固定構象,能夠與受體很好地契合,加上分子內不存在游離的氨端和羧端使得對氨肽酶和羧肽酶的敏感性大大降低。一般地說,環肽的代謝穩定性和生物利用度遠遠高于直鏈肽[13]。鑒于環肽的諸多優點,近年來對多肽研究的熱點已轉移到環肽的合成和生物評價上。

     根據環肽的環合方式又分為首尾相連環肽(Head-to-tail)、側鏈和側鏈相連環肽(Sidechain-to-sidechain)、側鏈和端基相連環肽(Sidechain-to-end)、含二硫鍵的環肽(Disufide-bridge)、以及含有其他橋連結構(硫醚鍵等)的環肽。從合成方法上講,首尾相連的環肽的合成難度最大。因為環肽的前體-直鏈肽的肽鍵具有很強的p鍵特征,分子更偏愛形成反式構象,呈舒展狀態,造成屬于反應中心的端基的羧基和氨基在空間上距離較遠,不利于發生分子內縮合反應,有利于分子間縮合。

     首尾相連的環肽通常是N端和C端游離的直鏈肽在稀溶液中(10-3~10-4M)由羧基和氨基形成酰氨鍵來合成。直鏈前體中的氨基酸種類和數目對成環的難易程度和環肽的收率起著至關重要的作用。甘氨酸、脯氨酸或D-構型氨基酸具有誘導β-轉角(β-Turn)的作用,常被認為可增加成環的可能性和收率。

    1. 合成首尾相連環肽的經典方法

    合成首尾相連環肽的經典方法是在稀溶液(10-3~10-4M) 中,將保護的線性前體選擇性地活化并環合。常用活潑酯法和迭氮法。

    1.1 活潑酯法

    活潑酯法中活化羧基和環合反應是分兩步進行的。活潑酯相對很穩定,一般不需要純化可直接用于環合反應。幾乎所有可用于偶聯反應的活潑酯都可用于合成環肽,主要有對硝基酚酯、N-羥基琥珀酰亞胺酯、五氟苯酯和2,4,5-三氯苯酚酯。線性多肽的C端羧基與對硝基酚、N-羥基琥珀酰亞胺、五氟苯酚或2,4,5-三氯苯酚,在DCC或其他縮合劑存在下,于低溫反應,很容易得到相應的活潑酯。這種N端通常帶有BOC或Z保護的活潑酯在酸性條件下脫去保護基,形成活潑酯的氫鹵酸鹽,在弱堿性稀溶液中,如在吡啶,DMF或二氧六環一類介電常數較大的溶劑中,保持pH 8~9,加熱(60~100°C)或室溫攪拌數小時至數日,最終可得到環肽。

     1.1.1對硝基酚酯法

     對硝基酚酯法合成環肽的通式

     Cyclo(β-Ala-Phe-Pro)的合成中應用了對硝基酚酯法。 Boc-β-Ala-Phe-Pro-OH在乙酸乙酯中與1.5摩爾量對硝基酚混合,DCC為縮合劑,得到Boc-β-Ala-Phe-Pro-ONp,經TFA脫去Boc,以0.1M NaHCO3和0.1M Na2CO3為堿,二氧六環為溶劑,室溫反應,得到收率為32% 的環三肽。對硝基酚酯法的優點在于對硝基酚價廉易得,缺點是過量的對硝基酚不易完全除去,產物不易純化,顏色發黃。

     1.1.2 N-羥基琥珀酰亞胺酯法:

     該方法原理與對硝基酚法一致,唯一不同點在于線性多肽的C端羧基在縮合劑EDC的存在下與N-羥基琥珀酰亞胺(HONSu)縮合,形成直鏈多肽的N-羥基琥珀酰亞胺酯。應用這種方法Toshihisa等在吡啶溶液中合成了cyclo(Pro-Val-Pro-Val)和cyclo(Pro-D-Val-Pro-D-Val),收率分別為15%和12%。二者為非對映異構體,前者具有植物生長抑制作用,后者卻表現為植物生長促進作用。

     1.1.3五氟苯酚酯法:

     這類活潑酯用于環肽的合成是近年才發展起來的。Joullie在合成天然環肽生物堿Sanjoinine G1和其C11位對映異構體時在環合步驟中就應用了五氟苯酚酯法。首先以D-絲氨酸為原料,經多步反應得到環合前體,用五氟苯酚活化羧基,N端芐氧羰基經氫解脫掉后,以4-吡咯烷吡啶為催化劑,在二氧六環中回流,最終得到兩個互為異構體的混合物,收率分別為27%和22%[29-30]。

     另外,海洋生物環肽Patellamine B以及對纖維蛋白酶和絲氨酸蛋白酶有強烈抑制作用的環肽Cyclotheonamide A 的環合步驟也是應用了五氟苯酯法,收率分別是20%和53%。

     1.2 迭氮法

     在多肽合成中迭氮法是另一種比較經典的方法,這種方法的優點在于很少引起消旋反應,最早用于直鏈肽的合成,現在常常被用于環肽的合成[32-34]。具體方法是,把直鏈肽的甲酯,乙酯,芐酯,取代芐酯或其它更活潑的酯通過肼解的方式生成酰肼,溶于醋酸或鹽酸-醋酸混合溶液,在-5°C左右的溫度下加入1M的亞硝酸鈉溶液,產生的亞硝酸則與酰肼反應生成迭氮物。N端游離的直鏈肽迭氮物于4°C 攪拌一天再升溫至室溫,可得環肽。Scheme 4. Peptide Cyclization via the acyl azide(X=Z or Boc,R=Me,Et,Bzl)

     Bodansky最早應用迭氮法合成了cyclo(D-Ala-D-Ala-Val-D-Leu-Ile),雖然上述環肽不具有其母體化合物malformin的生物活性,但合成它為應用迭氮法合成環肽開辟了前景[35]。

     應用迭氮法合成環肽的另一個成功的例子是內皮素拮抗劑的合成。Endothelin(ET)是一種高效的血管收縮劑,由21個氨基酸殘基組成,其受體拮抗劑之一cyclo(D-Trp-D-Asp(OtBu)Fmoc-Ser-D-Val-Leu)。

     DPPA系二苯基磷酰基迭氮化物,是一種穩定的液體,沸點157°C,用二苯基磷酰氯和NaN3在丙酮中室溫反應很方便地得到,可以直接用作多肽偶聯的縮合劑,近年來多用于環肽的合成。

     Arg-Gly-Asp(RGD)是多種細胞外蛋白與整合素相互作用時被整合素識別的關鍵序列,對含有該序列環肽的合成報道很多。Kessler等用固相合成儀SP650合成了13個含RGD序列的線性六肽和七個含RGD序列的線性五肽,N端和C端均游離的直鏈肽在稀溶液中以DPPA為縮合劑,保持pH 8.5~9,反應4天,得到相應的環六肽和環五肽,收率在15%~50%之間。生物活性實驗表明所有的環六肽對細胞粘附的抑制作用均明顯低于線性肽GRGDS。環五肽中也只有Cyclo(RGDdFV)和Cyclo(RGDFd-V)對Laminin P1的細胞粘附具有明顯的抑制作用[46-48]。

     對于某些在堿性條件下易分解的目的物,反應過程當中應用惰性氣體進行保護,例如,線性多肽H-Asp(Fmoc)- D-Ser-Phe- D-Phe- Arg- Gly - OH在無水DMF中,加入5倍量NaHCO3和10倍量DPPA,反應66小時,得到收率僅為3%的纖維蛋白原受體拮抗劑Cyclo(Asp-D-Ser- Phe-D-Phe-Arg-Gly);若改變NaHCO3和DPPA用量,并且反應過程中用氬氣保護,反應三天,可得到產率高達39%的上述環肽.兩種條件下所得收率有如此大的差別,主要原因是目的物在堿性條件下易分解。

     以DPPA為縮合劑合成環肽時,除了用NaHCO3、Na2CO3為無機堿外,也常使用KH2PO4。例如能夠與鴉片受體結合的環肽Try-C[D-A2bu-Phe-Phe-(L or D)-Leu]的合成中,就使用了KH2PO4這樣的弱堿催化,收率高達75%。用同樣的方法合成Somatostatin的類似物Cyclo(Lys-Phe-D-Trp-Lys-Thy-Phe),收率也達到了42%。

    以DPPA為縮合劑合成環肽時,有機堿常用三乙胺(Et3N)、N-甲基嗎啉(NMM)和二異丙基乙胺(DIEA),這三種弱堿能夠與有機溶劑混溶,用量遠遠少于NaHCO3和KH2PO4,而且NMM和DIEA不易引起消旋。

  

     2.環肽合成中新型縮合劑

     2.1 1-羥基-7-氮雜苯駢三唑(HOAt)衍生物

     近年來,HoAt類多肽合成縮合劑發展迅速,這類縮合劑包括TAPipU[O-(7-azabenzotriazol-1-yl)-1,1,3,3-penta-methyl enuronium tetrafluo roborate]、HAPyU[O-(7-azabenzo triazol-1-yl)-1,1,3,3-bis(tetra methylene) uronium hexafluoro phosphate]、PyAOP(7-azabenzo triazol -1- yloxyl - trispyrrolidino phosphonium hexa fluorophosphate)和HATU [O - (7 - azabenzotriazol -1-yl)-1,1,3,3-tetramethyluronium hexafluoro-phosphate]等。使用這些縮合劑不僅反應速度快,而且手性不受損害。

     Ehrlich等考察了不同縮合劑對GnRH衍生物十肽H-Nal-d-Cpa-d-Pal-Glu-Tyr-d-Arg-Leu-Arg-Pro-Lys(Ac)-OH環合反應的影響,發現HAPyU和TAPipU是環肽合成中非常有效的縮合劑,直鏈肽濃度在1.5mmol/L時,30分鐘內環合反應即完成。反應當中,縮合劑一般需要過量10%以保證反應完全。若增加溶液中線性多肽的濃度可以促使環合反應更快地發生。例如,線性十肽濃度在0.1M時,加入上述兩種縮合劑,兩分鐘內即發生環合;此外,令人驚奇的是,即使線性多肽濃度高達0.2M時,也未發生分子間縮合反應,這表明在首尾和側鏈環合反應中,稀溶液也許是不必要的。比較HAPyU和TAPipU在合成過程中對環肽消旋的影響,發現HAPyU更少引起消旋化反應,以TAPipU為縮合劑合成環六肽Cyclo[Val-Arg-Lys(Ac)-Ala-Val-Tyr]時,收率為25%,引起末端酪氨酸的消旋化達8%,若以HAPyU為縮合劑時,30分鐘內可得到55%收率的環六肽,D-構型酪氨酸-異構體不足0.5%。

     為了進一步驗證HoAt類縮合劑在合成環肽中的優勢,Ehrlich選擇了使用一般縮合劑難于得到的thymopentin類似物作為研究對象,對HAPyU、PyAOP和HATU就環合的產率及環合過程中發生的二聚和C端酪氨酸殘基構型的改變進行了系統的比較。結果表明,在線性多肽濃度為0.1mmol/L,DIEA三倍過量,HAPyU為縮合劑時,單體環肽的收率最高,達到82%,未檢測到D-Tyr-異構體和二聚體,說明這一條件是合成thymopentin類似物的最適條件,其他縮合劑在環合時,一則收率偏低,甚至不反應,二則造成酪氨酸消旋化。雖然延長時間可以增加收率,但隨之而來的是酪氨酸消旋化的增加。

     Phakellistatin 5是一種從海綿中提取得到的環七肽,Pettit等采用固相法得到直鏈前體后,以PyAOP為縮合劑,得到收率為28%的R-Asn-Phakellistatin 5。

Mink等人以N端Boc保護的天冬氨酸和絲氨酸芐酯為原料,采用液相法經多步反應得到具有多個噁唑結構的直鏈前體,N端和C端經氫解和酸脫保護后以HATU為縮合劑,得到了平面結構的Dolastatin E類似物。這種具有多種功能團的化合物可用于超分子化學和組合化學。

     此外,具有輔助放射性同位素(111In和125I)進入血小板的載體功能的Dolastatin D類似物Cyclo[Arg-Gly-Asp-D-Phe-Lys(or Tyr)][63],以及對血小板生長因子具有拮抗作用的血小板生長因子B鏈序列類似物Cyclo(Arg-Lys-Iles-Gla-Ile-Val-Arg-Lys-Lys-Cys)也是采用HATU為縮合劑進行環合反應得到的。

從以上給出的例子可以看出,環肽合成的縮合劑不象DCC那樣具有普遍的適用性。不同的環肽合成要求不同的縮合劑。

     2.2 TBTU和HBTU

     TBTU和HBTU最早是用于合成線性二肽和三肽的苯駢三氮唑類縮合劑。使用過程中,發現這兩種化合物在某些環肽的合成中表現出快速、高效的優點。Knorr等以TBTU/HoBt為縮合劑在DMF中得到了Cyclo(Tyr-Asp-Phe-Phe-Ser/Phr-Ala),Zimmer等人應用HPLC技術比較了TBTU/HOBt和DPPA/NaHCO3復合縮合劑在這種環六肽合成中的應用,結果表明前者反應速度非常快是后者的5~70倍。

     從海洋生物海綿中提取分離得到的phakellistation2,具有抑制鼠P388淋巴細胞和人癌細胞增殖的作用。由于人工從海綿中提取這種環肽比較困難,Pettit等對這種化合物進行了全合成,以便深入研究其生物活性。其中關鍵的環合步驟分別采用TBTU,BOP-Cl,PyBrOP和TBTU/HOBt為縮合劑,經數日(4~14天),得到收率不等的產物。其中TBTU為縮合劑時收率最高,達到55%。這種人工合成的環肽雖然在化學結構上與天然肽結構一致,但二者的生物活性卻差異甚大,合成的環肽對P388白血病淋巴細胞的抑制作用遠遠低于天然環肽,原因可能是二者的構象不同[67]。

     在對生長激素釋放抑制因子(SRIH)具有高效親和能力的環六肽MK-678:Cyclo[Phe-(N-Me)Ala-Tyr-D-Trp-Lys-Val]的合成中HBTU充分發揮了其高效的特點。另一種環六肽Cyclo[hCys-(N-Me)Phe -Tyr-D-Trp-Lys-Val]的合成也是應用HBTU為縮合劑。

     2.3 Bop法

     McMurray等以Cyclo(Asp-Asn-Glu-Tyr-Ala-Ala-Arg-Gln-D-Phe-Pro)(Tyr I+1)為研究對象,以便確定Tyr I+1的哪些位置對蛋白酪氨酸激酶的親和性是必不可少的,以及哪些氨基酸對活性貢獻最大,以Bop/HOBt為復合縮合劑,在1mmol/L濃度下,合成了一系列Tyr I+1類似物,并經磷酸化和親和力實驗,發現6位,7位是芳香類氨基酸的Cyclo(Asp-Asn-Gln- Tyr-Ala- Phe-Phe-Gln-D-Phe-Pro)的活性最強。

     以往具有RGD序列的多肽的研究多集中在抗血小板聚集方面,隨著對這一類化合物生物活性的深入研究,興奮點逐漸轉移到含RGD序列多肽抗粘附、抗血管增生和骨質疏松等方面,兩種含RGD的Cyclo(RGDRGD)和Cyclo(RGD RGd)(d=D-Asp)以及線性肽RGDRGD選擇性地與aVb3-玻璃體粘連蛋白結合,在骨再生實驗中均顯示出中等強度的活性,其中兩個環肽的合成是以Bop/HOBt為復合縮合劑,6.2倍過量的DIEA存在下進行的,收率高達80%。


    3. 固相法合成環肽

     固相法能夠有效地避免環合過程中二聚、多聚等副反應的發生。早在60年代,Fridkin等就應用高分子載體來合成環肽。線性多肽的C端羧基與樹脂形成酯鍵而將線性肽掛在樹脂上,脫去N端保護基后,以三乙胺中和,室溫12小時后得到60%~80%收率的環肽。

     近年來發展起來的通過氨基酸側鏈與樹脂連接合成環肽的策略在環肽合成中應用廣泛。對具有天冬氨酸或谷氨酸殘基的線性多肽,可選擇這兩個酸性氨基酸殘基的側鏈羧基為C端,與PAC(烷氧基芐醇)或PAL(烷氧基芐胺)或其他類型樹脂縮合,將線性多肽掛在樹脂上。主鏈羧基用烯丙基保護。逐步接肽完成之后脫去N端和C端保護基,加入縮合劑得到連在樹脂上的環合產物。最后用三氟醋酸:茴香硫醚:b-巰基乙醇:苯甲醚混合試劑從樹脂上切下環肽,同時脫去其它側鏈保護基。采用這種策略完成了Cyclo(Ala-Ala-Arg-D-Phe-Pro-Glu-asp-Asn-Tyr-glu)的合成,收率為71%。這種方法的局限性在于線性多肽前體中必需包含天冬氨酸或天冬酰氨,谷氨酸或谷氨酰胺。

     對-硝基苯基甲酮肟聚合物最早被DeGrado和Kaiser作為固相載體用于多肽的固相合成[83]。肽基肟酯在酸性條件下穩定,但在氨解的條件下很不穩定。利用肟酯能夠氨解的特點,Ospay等在合成環十肽Tyrocidine A(TA)[84]時應用此法在肟樹脂上合成直鏈的十肽,N端經TFA脫去Boc基后用DIEA中和,使氨基游離,室溫攪拌24小時后,得到側鏈保護的環肽,脫去保護基,純化,得到收率高達55%的TA。


    4. 酶法合成環肽

    在緩沖液中利用蛋白酶合成環肽也是正在發展的方法之一。Jackson等報道了以線性多肽酯的衍生物為底物,通過酶催化成環的方法合成了幾個包含12~25個氨基酸殘基頭尾相接的環肽,環化用的酶Subtiligase是枯草桿菌蛋白酶突變的產物,催化反應體系為pH=8的緩沖溶液。用HPLC檢測,收率在30%~80%之間。環化效率與肽的序列和長度有關。利用Subtiligase合成環肽所需的線性肽的最小長度是12個氨基酸殘基,低于此數將得到水解產物或線性肽二聚產物。可能是因為低于12個殘基的肽底物形成的頭尾相接的空間構象不能與酶的活性中心匹配。


     5. 合成環肽的其它方法

    下面介紹幾種比較特殊的環肽合成方法:

    Meuterman[86-87]等人巧妙地將光敏感輔助劑融合在環肽合成過程中,這種與常規合成方法不同的策略,不僅豐富了環肽合成方法學的內容,也為其他合成工作者提供了想象空間。直鏈五肽H-Ala-Phe-Leu -Pro-Ala-OH H-Ala-Phe-Leu-Pro-D-Ala-OH和H- Phe- Leu -Pro-Ala -Ala-OH在常規條件下,溶于DMF,使成為10-3~10-4 M溶液,加入3倍量Bop為縮合劑,5倍量DIEA作為堿和催化劑,未得到單體環合化合物,只得到了環二聚體和環三聚體。采用光敏輔助劑的方法,將5-硝基-2-羥基芐基和6-硝基-2-羥基芐基以及巰基乙基等光敏結構引入線性肽N端,這些結構中的羥基或巰基與C端羧基成酯后,使得N端與C端在空間位置上更為接近,經酰基轉移使環縮小而得到N端連有光敏輔助劑的環肽,最后經光解反應脫去光敏輔助劑,得到首尾相連的環五肽,收率為20%。

    在傳統的環肽合成方法中,不僅線性肽前體的氨基酸側鏈一般都需要保護,而且要求反應物在溶液中呈高度稀釋狀態,非保護的氨基酸的環合無論是在概念上還是在機理上都不同于傳統環合方法,主要特征是(1)酰胺鍵在沒有活化劑存在下,通過分子內酰基轉移而形成;(2)兩個反應端基在緩沖液中的可逆反應造成環-鏈的結構互變,調節和控制環的形成。這種非保護環肽的合成方法避免了煩瑣的保護和脫保護步驟以及反應液高度稀釋的要求,終產物可直接用于生物活性實驗。

     Jame P.Tam等建立了分子內轉移硫內酯化和Ag+離子輔助環合來制備非保護環肽的方法。對于N端為半胱氨酸,C端為硫酯的線性多肽,在pH=7的磷酸緩沖液中,巰基與硫酯基生成共價的硫內酯,這種硫內酯自發地經過S原子到N原子酰基遷移而形成環肽。

     作者應用上述方法合成了一系列N端為半胱氨酸的Cyclo(Cys-Tyr-Gly-Xaa-Yaa-Leu),為了防止二硫橋的形成和加速環合反應的進行,反應過程中加入TCEP(三羧基乙基膦),反應時間約為4小時,收率在78%~92%之間,HPLC檢測未發現副反應和低聚物。

     對于不含半胱氨酸的線性多肽的環合,采用親硫的Ag+離子輔助配位柔性的線性多肽的N端氨基與C端硫酯形成一個環狀的中間體,通過熵活化促進分子內環合。與硫內酯環合方法原理相似,Ag+離子通過一種非經典環-鏈結構互變而促使分子內環合的發生。

    應用上述方法合成環肽的具體實例是Cyclo(Ala-Lys-Try-Gly- Gly-Phe-Leu)的合成。在pH5.7的醋酸緩沖溶液中加入10%的DMSO作為助溶劑,反應5小時后得到收率為67%的目的物。


    6. 環二肽的合成

    環二肽(2,5-哌嗪二酮)是最小的環肽,許多天然環二肽化合物都具有明確的生物活性,例如作為抗生素,苦味劑,植物生長抑制劑以及激素釋放抑制劑等。環二肽結構的特殊性使得這類化合物的合成自成體系,通常由N端游離的直鏈肽酯在極性溶劑中回流,便可以很容易地得到目的物。Fischer雖然在甲醇氨中氨解線性二肽甲酯而得到環二肽,但同時發現這種方法易引起消旋。Nitecki提出將N端游離的線性二肽甲酯在丁醇和甲苯的混合溶劑中回流合成環二肽不會造成消旋。Ueda使用甲醇為溶劑進行回流,也得到了很好收率的環二肽;Cook等人應用1,2-乙二醇作為反應溶劑,得到了兩種非對映異構體環二肽,總收率達64.5%。最近汪有初等報道了參照Ueda和Cook的方法合成了一系列環二肽,收率在55%~99%之間,并且通過生物活性實驗發現Cyclo(Phe-Pro),Cyclo(Ile-Ile)和Cyclo(Met-Met)具有輕微的鈣拮抗效應,Cyclo(Ala-Ala)和Cyclo(Pro-Pro)則顯示了增強鉀所致的收縮效應。

     以上介紹了迄今為止合成首尾相連環肽的方法。由于環肽的前體-直鏈肽所包含的氨基酸的數目和種類的千差萬別,造成了環肽合成方法的多樣化。對某種直鏈肽表現出高效,快速縮合作用的試劑和方法對另外一種肽鏈就可能變得低效或無效。因此,根據目標環肽的序列尋找對應的環肽合成方法必須通過認真的探索和艱辛的努力。


?